Iterative Solution of the Supereigenvalue Model

نویسنده

  • Jan C. Plefka
چکیده

An integral form of the discrete superloop equations for the supereigenvalue model of Alvarez–Gaumé, Itoyama, Mañes and Zadra is given. By a change of variables from coupling constants to moments we find a compact form of the planar solution for general potentials. In this framework an iterative scheme for the calculation of higher genera contributions to the free energy and the multi–loop correlators is developed. We present explicit results for genus one. Supported by the ‘Studienstiftung des Deutschen Volkes’

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Chiral Supereigenvalue Model

A supereigenvalue model with purely positive bosonic eigenvalues is presented and solved by considering its superloop equations. This model represents the supersymmetric generalization of the complex one matrix model, in analogy to the relation between the supereigenvalue and the hermitian one matrix model. Closed expressions for all planar multi-superloop correlation functions are found. Moreo...

متن کامل

The Supereigenvalue Model in the Double–Scaling Limit

The double–scaling limit of the supereigenvalue model is performed in the moment description. This description proves extremely useful for the identification of the multi-critical points in the space of bosonic and fermionic coupling constants. An iterative procedure for the calculation of higher–genus contributions to the free energy and to the multi–loop correlators in the double–scaling limi...

متن کامل

Supersymmetric Generalizations of Matrix Models

jedoch noch nicht hergeleitet werden. Abstract In this thesis generalizations of matrix and eigenvalue models involving supersym-metry are discussed. Following a brief review of the Hermitian one matrix model, the c = −2 matrix model is considered. Built from a matrix valued superfield this model displays supersymmetry on the matrix level. We stress the emergence of a Nicolai–map of this model ...

متن کامل

An Effective Iterative Algorithm for Modeling of Multicomponent Gas Separation in a Countercurrent Membrane Permeator

 A model is developed for separation of multicomponent gas mixtures in a countercurrent hollow fiber membrane module. While the model’s solution in countercurrent module usually involves in a time consuming iterative procedure, a proper initial guess is proposed for beginning the calculation and a simple procedure is introduced for correcting the guesses, hereby the CPU time is decreased ess...

متن کامل

Iterative algorithm for the generalized ‎$‎(P‎,‎Q)‎$‎-reflexive solution of a‎ ‎quaternion matrix equation with ‎$‎j‎$‎-conjugate of the unknowns

In the present paper‎, ‎we propose an iterative algorithm for‎ ‎solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix‎ ‎equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} ‎{underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$‎. ‎By this iterative algorithm‎, ‎the solvability of the problem can be determined automatically‎. ‎When the‎ ‎matrix equation is consistent over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995